JVM 之 CMS垃圾收集器

总体介绍:

CMS(Concurrent Mark-Sweep)是以牺牲吞吐量为代价来获得最短回收停顿时间的垃圾回收器。对于要求服务器响应速度的应用上,这种垃圾回收器非常适合。在启动JVM参数加上-XX:+UseConcMarkSweepGC ,这个参数表示对于老年代的回收采用CMS。CMS采用的基础算法是:标记—清除。

CMS过程:

  • 初始标记(STW initial mark)
  • 并发标记(Concurrent marking)
  • 并发预清理(Concurrent precleaning)
  • 重新标记(STW remark)
  • 并发清理(Concurrent sweeping)
  • 并发重置(Concurrent reset)

初始标记 :在这个阶段,需要虚拟机停顿正在执行的任务,官方的叫法STW(Stop The Word)。这个过程从垃圾回收的"根对象"开始,只扫描到能够和"根对象"直接关联的对象,并作标记。所以这个过程虽然暂停了整个JVM,但是很快就完成了。

并发标记 :这个阶段紧随初始标记阶段,在初始标记的基础上继续向下追溯标记。并发标记阶段,应用程序的线程和并发标记的线程并发执行,所以用户不会感受到停顿。

并发预清理 :并发预清理阶段仍然是并发的。在这个阶段,虚拟机查找在执行并发标记阶段新进入老年代的对象(可能会有一些对象从新生代晋升到老年代, 或者有一些对象被分配到老年代)。通过重新扫描,减少下一个阶段"重新标记"的工作,因为下一个阶段会Stop The World。

重新标记 :这个阶段会暂停虚拟机,收集器线程扫描在CMS堆中剩余的对象。扫描从"跟对象"开始向下追溯,并处理对象关联。

并发清理 :清理垃圾对象,这个阶段收集器线程和应用程序线程并发执行。

并发重置 :这个阶段,重置CMS收集器的数据结构,等待下一次垃圾回收。

 

CSM执行过程: 


CMS参数介绍

-XX:+UseConcMarkSweepGC

该标志首先是激活CMS收集器。默认HotSpot JVM使用的是并行收集器。

-XX:UseParNewGC

当使用CMS收集器时,该标志激活年轻代使用多线程并行执行垃圾回收。这令人很惊讶,我们不能简单在并行收集器中重用-XX:UserParNewGC标志,因为概念上年轻代用的算法是一样的。然而,对于CMS收集器,年轻代GC算法和老年代GC算法是不同的,因此年轻代GC有两种不同的实现,并且是两个不同的标志。

注意最新的JVM版本,当使用-XX:+UseConcMarkSweepGC时,-XX:UseParNewGC会自动开启。因此,如果年轻代的并行GC不想开启,可以通过设置-XX:-UseParNewGC来关掉。

-XX:+CMSConcurrentMTEnabled

当该标志被启用时,并发的CMS阶段将以多线程执行(因此,多个GC线程会与所有的应用程序线程并行工作)。该标志已经默认开启,如果顺序执行更好,这取决于所使用的硬件,多线程执行可以通过-XX:-CMSConcurremntMTEnabled禁用。

 -XX:ConcGCThreads

标志-XX:ConcGCThreads=<value>(早期JVM版本也叫-XX:ParallelCMSThreads)定义并发CMS过程运行时的线程数。比如value=4意味着CMS周期的所有阶段都以4个线程来执行。尽管更多的线程会加快并发CMS过程,但其也会带来额外的同步开销。因此,对于特定的应用程序,应该通过测试来判断增加CMS线程数是否真的能够带来性能的提升。

如果还标志未设置,JVM会根据并行收集器中的-XX:ParallelGCThreads参数的值来计算出默认的并行CMS线程数。该公式是ConcGCThreads = (ParallelGCThreads + 3)/4。因此,对于CMS收集器, -XX:ParallelGCThreads标志不仅影响“stop-the-world”垃圾收集阶段,还影响并发阶段。

总之,有不少方法可以配置CMS收集器的多线程执行。正是由于这个原因,建议第一次运行CMS收集器时使用其默认设置, 然后如果需要调优再进行测试。只有在生产系统中测量(或类生产测试系统)发现应用程序的暂停时间的目标没有达到 , 就可以通过这些标志应该进行GC调优。

-XX:CMSInitiatingOccupancyFraction

当堆满之后,并行收集器便开始进行垃圾收集,例如,当没有足够的空间来容纳新分配或提升的对象。对于CMS收集器,长时间等待是不可取的,因为在并发垃圾收集期间应用持续在运行(并且分配对象)。因此,为了在应用程序使用完内存之前完成垃圾收集周期,CMS收集器要比并行收集器更先启动。

因为不同的应用会有不同对象分配模式,JVM会收集实际的对象分配(和释放)的运行时数据,并且分析这些数据,来决定什么时候启动一次CMS垃圾收集周期。为了引导这一过程, JVM会在一开始执行CMS周期前作一些线索查找。该线索由 -XX:CMSInitiatingOccupancyFraction=<value>来设置,该值代表老年代堆空间的使用率。比如,value=75意味着第一次CMS垃圾收集会在老年代被占用75%时被触发。通常CMSInitiatingOccupancyFraction的默认值为68(之前很长时间的经历来决定的)。

-XX:+UseCMSInitiatingOccupancyOnly

我们用-XX+UseCMSInitiatingOccupancyOnly标志来命令JVM不基于运行时收集的数据来启动CMS垃圾收集周期。而是,当该标志被开启时,JVM通过CMSInitiatingOccupancyFraction的值进行每一次CMS收集,而不仅仅是第一次。然而,请记住大多数情况下,JVM比我们自己能作出更好的垃圾收集决策。因此,只有当我们充足的理由(比如测试)并且对应用程序产生的对象的生命周期有深刻的认知时,才应该使用该标志。

-XX:+CMSClassUnloadingEnabled

相对于并行收集器,CMS收集器默认不会对永久代进行垃圾回收。如果希望对永久代进行垃圾回收,可用设置标志-XX:+CMSClassUnloadingEnabled。在早期JVM版本中,要求设置额外的标志-XX:+CMSPermGenSweepingEnabled。注意,即使没有设置这个标志,一旦永久代耗尽空间也会尝试进行垃圾回收,但是收集不会是并行的,而再一次进行Full GC。

-XX:+CMSIncrementalMode

该标志将开启CMS收集器的增量模式。增量模式经常暂停CMS过程,以便对应用程序线程作出完全的让步。因此,收集器将花更长的时间完成整个收集周期。因此,只有通过测试后发现正常CMS周期对应用程序线程干扰太大时,才应该使用增量模式。由于现代服务器有足够的处理器来适应并发的垃圾收集,所以这种情况发生得很少。

-XX:+ExplicitGCInvokesConcurrent and -XX:+ExplicitGCInvokesConcurrentAndUnloadsClasses

如今,被广泛接受的最佳实践是避免显式地调用GC(所谓的“系统GC”),即在应用程序中调用system.gc()。然而,这个建议是不管使用的GC算法的,值得一提的是,当使用CMS收集器时,系统GC将是一件很不幸的事,因为它默认会触发一次Full GC。幸运的是,有一种方式可以改变默认设置。标志-XX:+ExplicitGCInvokesConcurrent命令JVM无论什么时候调用系统GC,都执行CMS GC,而不是Full GC。第二个标志-XX:+ExplicitGCInvokesConcurrentAndUnloadsClasses保证当有系统GC调用时,永久代也被包括进CMS垃圾回收的范围内。因此,通过使用这些标志,我们可以防止出现意料之外的”stop-the-world”的系统GC。

-XX:+DisableExplicitGC

然而在这个问题上…这是一个很好提到- XX:+ DisableExplicitGC标志的机会,该标志将告诉JVM完全忽略系统的GC调用(不管使用的收集器是什么类型)。对于我而言,该标志属于默认的标志集合中,可以安全地定义在每个JVM上运行,而不需要进一步思考。

CMS日志实例

4391.322: [GC [1 CMS-initial-mark: 655374K(1310720K)] 662197K(1546688K), 0.0303050 secs] [Times: user=0.02 sys=0.02, real=0.03 secs] 
4391.352: [CMS-concurrent-mark-start] 
4391.779: [CMS-concurrent-mark: 0.427/0.427 secs] [Times: user=1.24 sys=0.31, real=0.42 secs] 
4391.779: [CMS-concurrent-preclean-start] 
4391.821: [CMS-concurrent-preclean: 0.040/0.042 secs] [Times: user=0.13 sys=0.03, real=0.05 secs] 
4391.821: [CMS-concurrent-abortable-preclean-start] 
4392.511: [CMS-concurrent-abortable-preclean: 0.349/0.690 secs] [Times: user=2.02 sys=0.51, real=0.69 secs] 
4392.516: [GC[YG occupancy: 111001 K (235968 K)]4392.516: [Rescan (parallel) , 0.0309960 secs]4392.547: [weak refs processing, 0.0417710 secs] [1 CMS-remark: 655734K(1310720K)] 766736K(1546688K), 0.0932010 secs] [Times: user=0.17 sys=0.00, real=0.09 secs] 
4392.609: [CMS-concurrent-sweep-start] 
4394.310: [CMS-concurrent-sweep: 1.595/1.701 secs] [Times: user=4.78 sys=1.05, real=1.70 secs] 
4394.310: [CMS-concurrent-reset-start] 
4394.364: [CMS-concurrent-reset: 0.054/0.054 secs] [Times: user=0.14 sys=0.06, real=0.06 secs]
其中可以看到CMS-initial-mark阶段暂停了0.0303050秒,而CMS-remark阶段暂停了0.0932010秒,因此两次暂停的总共时间是0.123506秒,也就是123毫秒左右。两次短暂停的时间之和在200以下

但是你很可能遇到两种fail引起full gc:Prommotion failed和Concurrent mode failed。

Prommotion failed的日志输出大概是这样:

[ParNew (promotion failed): 320138K->320138K(353920K), 0.2365970 secs]42576.951: [CMS: 1139969K->1120688K( 
166784K), 9.2214860 secs] 1458785K->1120688K(2520704K), 9.4584090 secs] 


这个问题的产生是由于救助空间不够,从而向年老代转移对象,年老代没有足够的空间来容纳这些对象,导致一次full gc的产生。解决这个问题的办法有两种完全相反的倾向:增大救助空间、增大年老代或者去掉救助空间。 增大救助空间就是调整-XX:SurvivorRatio参数,这个参数是Eden区和Survivor区的大小比值,默认是32,也就是说Eden区是 Survivor区的32倍大小,要注意Survivo是有两个区的,因此Surivivor其实占整个young genertation的1/34。调小这个参数将增大survivor区,让对象尽量在survitor区呆长一点,减少进入年老代的对象。去掉救助空 间的想法是让大部分不能马上回收的数据尽快进入年老代,加快年老代的回收频率,减少年老代暴涨的可能性,这个是通过将-XX:SurvivorRatio 设置成比较大的值(比如65536)来做到。在我们的应用中,将young generation设置成256M,这个值相对来说比较大了,而救助空间设置成默认大小(1/34),从压测情况来看,没有出现prommotion failed的现象,年轻代比较大,从GC日志来看,minor gc的时间也在5-20毫秒内,还可以接受,因此暂不调整。

Concurrent mode failed的产生是由于CMS回收年老代的速度太慢,导致年老代在CMS完成前就被沾满,引起full gc,避免这个现象的产生就是调小-XX:CMSInitiatingOccupancyFraction参数的值,让CMS更早更频繁的触发,降低年老代被沾满的可能。我们的应用暂时负载比较低,在生产环境上年老代的增长非常缓慢,因此暂时设置此参数为80。在压测环境下,这个参数的表现还可以,没有出现过Concurrent mode failed。

CMS缺点

  • CMS回收器采用的基础算法是Mark-Sweep。所有CMS不会整理、压缩堆空间。这样就会有一个问题:经过CMS收集的堆会产生空间碎片。 CMS不对堆空间整理压缩节约了垃圾回收的停顿时间,但也带来的堆空间的浪费。为了解决堆空间浪费问题,CMS回收器不再采用简单的指针指向一块可用堆空 间来为下次对象分配使用。而是把一些未分配的空间汇总成一个列表,当JVM分配对象空间的时候,会搜索这个列表找到足够大的空间来hold住这个对象。
  • 需要更多的CPU资源。从上面的图可以看到,为了让应用程序不停顿,CMS线程和应用程序线程并发执行,这样就需要有更多的CPU,单纯靠线程切 换是不靠谱的。并且,重新标记阶段,为空保证STW快速完成,也要用到更多的甚至所有的CPU资源。当然,多核多CPU也是未来的趋势!
  • CMS的另一个缺点是它需要更大的堆空间。因为CMS标记阶段应用程序的线程还是在执行的,那么就会有堆空间继续分配的情况,为了保证在CMS回 收完堆之前还有空间分配给正在运行的应用程序,必须预留一部分空间。也就是说,CMS不会在老年代满的时候才开始收集。相反,它会尝试更早的开始收集,已 避免上面提到的情况:在回收完成之前,堆没有足够空间分配!默认当老年代使用68%的时候,CMS就开始行动了。 – XX:CMSInitiatingOccupancyFraction =n 来设置这个阀值。

总得来说,CMS回收器减少了回收的停顿时间,但是降低了堆空间的利用率。

啥时候用CMS

如果你的应用程序对停顿比较敏感,并且在应用程序运行的时候可以提供更大的内存和更多的CPU(也就是硬件牛逼),那么使用CMS来收集会给你带来好处。还有,如果在JVM中,有相对较多存活时间较长的对象(老年代比较大)会更适合使用CMS。

本文来自网易实践者社区,经作者张子铎授权发布。